Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : e333-2017.
Article in English | WPRIM | ID: wpr-17711

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder that is associated with repetitive head injury and has distinctive neuropathological features that differentiate this disease from other neurodegenerative diseases. Intraneuronal tau aggregates, although they occur in different patterns, are diagnostic neuropathological features of CTE, but the precise mechanism of tauopathy is not known in CTE. We performed whole RNA sequencing analysis of post-mortem brain tissue from patients with CTE and compared the results to normal controls to determine the transcriptome signature changes associated with CTE. The results showed that the genes related to the MAP kinase and calcium-signaling pathways were significantly downregulated in CTE. The altered expression of protein phosphatases (PPs) in these networks further suggested that the tauopathy observed in CTE involves common pathological mechanisms similar to Alzheimer's disease (AD). Using cell lines and animal models, we also showed that reduced PPP3CA/PP2B phosphatase activity is directly associated with increases in phosphorylated (p)-tau proteins. These findings provide important insights into PP-dependent neurodegeneration and may lead to novel therapeutic approaches to reduce the tauopathy associated with CTE.


Subject(s)
Humans , Alzheimer Disease , Brain , Brain Injury, Chronic , Cell Line , Craniocerebral Trauma , Gene Expression Profiling , Models, Animal , Neurodegenerative Diseases , Phosphoprotein Phosphatases , Phosphotransferases , Sequence Analysis, RNA , Tauopathies , Transcriptome
2.
Experimental Neurobiology ; : 233-240, 2016.
Article in English | WPRIM | ID: wpr-184906

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that leads to a progressive muscle wasting and paralysis. The pathological phenotypes are featured by severe motor neuron death and glial activation in the lumbar spinal cord. Proposed ALS pathogenic mechanisms include glutamate cytotoxicity, inflammatory pathway, oxidative stress, and protein aggregation. However, the exact mechanisms of ALS pathogenesis are not fully understood yet. Recently, a growing body of evidence provides a novel insight on the importance of glial cells in relation to the motor neuronal damage via the non-cell autonomous pathway. Accordingly, the aim of the current paper is to overview the role of astrocytes and microglia in the pathogenesis of ALS and to better understand the disease mechanism of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Astrocytes , Glutamic Acid , Microglia , Motor Neurons , Neurodegenerative Diseases , Neuroglia , Oxidative Stress , Paralysis , Phenotype , Spinal Cord
SELECTION OF CITATIONS
SEARCH DETAIL